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Problem Description

Description of Data Sets

Survey aircraft equipped with a LIDAR range detection system
produce maps of terrain consisting of millions of non-uniformly
sampled points in R3. This list of points is referred to as a Point
Cloud.
P = {(x1, y1, z1), (x2, y2, z2), ..., (xn, yn, zn).
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Problem Description

Problems With Current Point Cloud Representations

Ideally this point cloud could be converted to an image and
transmitted in real time. Currently however, techniques for
producing viewable images from point cloud data sets are neither
time or memory efficient.

I Regression techniques such as LOESS, which approximates the
manifold locally using low degree polynomials produce good
visualizations but do not admit a compact representation.

I Techniques which approximate the function piecewise on
arbitrary adaptive meshes also do not admit a compact
representation since the mesh is unknown to the receiver.
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Problem Description

Project Goal

The goal of this project is to implement the wedgelet image
transform on a LIDAR point cloud corresponding to urban terrain
to create a highly compressed representation of the image.
Additional preprocessing algorithms will be implemented to attain
additional compression and improve image fidelity.
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Description of The Wedgelet Algorithm

The idea behind wedgelets was first described by Donoho in [1] as
a way to encode images in the cartoon class, piecewise constant
images with C2 boundaries between discontinuities. The goal of
wedgelets was to be able to capture directional data present in an
image which wavelets are unable to capture.
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Description of The Wedgelet Algorithm

Wedgelets work by inducing a dyadic partition of an image, a tiling
of the image space using squares of not necessarily constant size.
On each square a line is drawn seperating the square into disjoint
regions called wedges. Each wedge is then fitted with a constant
value.
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Description of The Wedgelet Algorithm

Figure 1: IBB North. 640 × 480 (a) Original image, (b) approximation using
1000 dyadic squares, and (c) approximation using 1000 wedges.
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Figure: Original Grey Scale
Image of a House[3]

Figure 1: IBB North. 640 × 480 (a) Original image, (b) approximation using
1000 dyadic squares, and (c) approximation using 1000 wedges.
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Figure: Wedgelet Transform
using 1000 Wedges [3]
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Description of The Wedgelet Algorithm

Wedgelets are provably quazioptimal when used on images of a
class similar to the class we are interested in[1]. Namely data with
a large geometric component such as urban topography. The line
through each dyadic square essentially serves an an edge detector.
Once the two discontinuous regions are separated they can be well
approximated using a finite element space containing few degrees
of freedom.
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Description of The Wedgelet Algorithm

Theorem
Laurent: Let f be a piecewise constant with C 2 boundary. Assume
that the set Lj consists of all lines taking the angles
{−π

2 + 2−j lπ : 0 ≤ l ≤ 2j}. Then for N ∈ N there exists a wedgelet
approximation (g ,W ) with |W | ≤ N and ||f − g ||22 ≤ CN−2.[3]
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Description of The Wedgelet Algorithm

Advantages of Wedgelets

Wedgelets allow a very compact representation by taking
advantage of the quadtree structure induced by the dyadic
partition and by using approximating functions containing few
degrees of freedom.
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Statistical Preprocessing

One disadvantage of using raw point cloud data as opposed to
gridded data is the increased presence of sensor noise. Most of this
noise consists of incorrect extreme values and gaussian white noise.
Wedgelets has demonstrated some ability at eliminating white
noise[2].
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Statistical Preprocessing

Examples of Noisy Images

Figure: Salt and Pepper Noise 10 percent
distribution
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Statistical Preprocessing

Examples of Noisy Images

Figure: Gaussian White Noise µ = 0, σ = .005
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Statistical Preprocessing

Examples of Noisy Images

Several algorithms have been proposed for the elimination of
statistical outliers from laser point clouds.[5] Any algorithm that is
implemented must be able to act on the point cloud at multiple
scales. It must also be able to distinguish true outliers from
discontinuities inherent in the data.
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Intrinsic Point Cloud Simplification

One disadvantage of the wedgelets transform is its computational
complexity. For large data sets the algorithm will be required to
perform tens of thousands of least squares regressions on data sets
as large as ten million points.
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Intrinsic Point Cloud Simplification

Moenning and Dodgson[4] have proposed an algorithm that
removes redundant points from a point cloud data set. The
algorithm is based on the idea of ’farthest point sampling.’

I A reduced data set makes the task of generating an image or
compact representation from the point cloud much easier.

I This is particularly important given the complexity of the
wedgelet transform.
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Intrinsic Point Cloud Simplification

This algorithm is robust in the sense that it can be applied locally
without fear of ”over deleting” elements from the cloud. There is a
built in user defined minimal density guarantee that can be applied
at all scales of the image[4].

I This is important because if a particular section of the point
cloud is overly thinned then the existence of a unique linear
least squares fit cannot be guaranteed on that section.

I This would make wedgelets useless on that section of the
point cloud.
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Intrinsic Point Cloud Simplification

Figure 4. Feature-sensitively distributed point sets gener-

ated by adaptive simplification using local curvature esti-

mation over rendering of corresponding mesh reconstruc-

tions. (a) ρ = 8.00 (b) ρ = 5.50.

quired to meet a uniform density requirement. As illus-

trated by figures 1 and 4, the algorithm presented here

meets this requirement by taking into account a user-

controlled density parameter ρ. The desired degree of uni-
formity is enforced irrespective of the degree of uniformity

of the input point set. Due to the surface Voronoi diagram

covering both over- and undersampled regions of the input

point cloud, undersampled regions can be upsampled auto-

matically by adjusting ρ as required.
Memory efficiency. The algorithm executes in-core

using a grid data structure holding the offset band Ωr and

both a min- and max-heap. The memory requirements of

the grid data structure depend on the size of the input point

cloud and the radius r of the balls centred at the input points
and used to determine the grid points to be included in Ωr.

The radius r may be allowed to vary adaptively alongside
the grid density. As an approximate upper limit, the mem-

ory requirement follows c ∗ (maxiai)3, where ai denotes

the length of the point cloud’s bounding box in the ith di-
rection with c representing a small constant varying pro-
portionally with the grid density.

The single min-heap is used to propagate multiple

fronts simultaneously. Since, as part of the Fast Marching

method, these fronts are only propagated in the direction of

increasing distance, their size is substantially smaller than

the size of the offset band at any time. The max-heap is

Figure 5. Renderings of meshes reconstructed from point

sets generated by adaptive simplification using local curva-

ture estimation.

(a) 97.5% simplified (ρ = 8.50).
(b) 95.0% simplified (ρ = 4.30).
(c) 90.0% simplified (ρ = 2.10).
(d) Original model (187644 points).

used to hold the farthest point candidates. Its memory re-

quirements therefore vary with the magnitude of the den-

sity parameter and the target model size respectively, which

will generally be a fraction of the input model size.

Approximation error. Qualitatively, as indicated by

figures 2, 3 and 5, even for relatively small target model

sizes, both the uniformly and feature-sensitively generated

point sets allow for visually appealing reconstructions. For

a more objective, quantitative evaluation of the extent of

the geometric error introduced by the simplification, we are

working on an automatic analysis tool which exploits the

availability of the dual of the surface Voronoi diagram, i.e.,

the Delaunay triangulation of the point sets, to compute the

distance between the surfaces represented by the input and

output point sets.

4 Conclusion

We presented a new point cloud simplification algorithm

with user-controlled density guarantee. The algorithm is

computationally and memory efficient, easy to implement

and requires no intermediate or prior surface reconstruc-

tion. Uniform point cloud simplification using our algo-

rithm allows for high-quality further processing without the

need for any prior resampling. Feature-sensitive simplifi-

cation may be driven by any combination of point weights

including colour differences and changes in curvature. The

coarse-to-fine nature of the algorithm naturally supports the

generation of progressive and multiresolution representa-

tions of the input point cloud.

Figure: Example of
Moenning and Dodgson’s
Point Cloud Simplification
Technique[4]
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Validation

Validation is to be accomplished in three steps:

I Analytic Proofs

I Implementation on a known image

I Comparison with Images from the USGS Archives
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Validation

Analytic Proofs

I Donoho[1] and F uhr [3] demonstrate strong error bounds for
wedgelets under the assumption that the domain space is
continuous.

I Moenning and Dodgson do not include any analytic error
analysis with the description of their algorithm

I We would like to provide similarly strong error bounds on the
Wedgelet algorithm assuming a discrete image space, and to
perform a mathematical analysis of the error introduced by
Moenning and Dodgson’s point cloud simplification technique.
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Validation

Implementation On a Known Image

This stage of validation we will take a given gridded image and
represent it as a point cloud. The compression algorithm will then
process the point cloud. The resulting image should be similar to
the image resulting when wedgelets is run on the original gridded
image.
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Validation

Comparison With Images from the USGS Archives

The algorithm will process a point cloud taken from the USGS
archive. The resulting image will be compared to a DEM (Digital
elevation model) of the same region.
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Planned Languages and Hardware

I The primary language will be C++

I Some MATLAB will be used for visualization

The recursive nature of the Wedgelets algorithm makes it a prime
candidate for paralyzation. Currently the planned hardware
consists of two windows PCs with dual core 2.33GHz Intel Xenon
processors.
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